3,753 research outputs found

    Energy transport in strongly disordered superconductors and magnets

    Full text link
    We develop an analytical theory for quantum phase transitions driven by disorder in magnets and superconductors. We study these transitions with a cavity approximation which becomes exact on a Bethe lattice with large branching number. We find two different disordered phases, characterized by very different relaxation rates, which both exhibit strong inhomogeneities typical of glassy physics.Comment: 4 pages, 1 figur

    Comment on "Spin Transport properties of the quantum one-dimensional non-linear sigma model"

    Full text link
    In a recent preprint (cond-mat/9905415), Fujimoto has used the Bethe ansatz to compute the finite temperature, zero frequency Drude weight of spin transport in the quantum O(3) non-linear sigma model in a magnetic field H0H \neq 0. We show here that, contrary to his claims, the results are in accord with earlier semiclassical results (Sachdev and Damle, cond-mat/9610115). We also comment on his 1/N expansion, and show that it does not properly describe the long-time correlations.Comment: 4 page

    Metallic spin glasses

    Full text link
    Recent work on the zero temperature phases and phase transitions of strongly random electronic system is reviewed. The transition between the spin glass and quantum paramagnet is examined, for both metallic and insulating systems. Insight gained from the solution of infinite range models leads to a quantum field theory for the transition between a metallic quantum paramagnetic and a metallic spin glass. The finite temperature phase diagram is described and crossover functions are computed in mean field theory. A study of fluctuations about mean field leads to the formulation of scaling hypotheses.Comment: Contribution to the Proceedings of the ITP Santa Barbara conference on Non-Fermi liquids, 25 pages, requires IOP style file

    Trends and challenges in VLSI technology scaling towards 100 nm

    Get PDF
    Summary form only given. Moore's Law drives VLSI technology to continuous increases in transistor densities and higher clock frequencies. This tutorial will review the trends in VLSI technology scaling in the last few years and discuss the challenges facing process and circuit engineers in the 100nm generation and beyond. The first focus area is the process technology, including transistor scaling trends and research activities for the 100nm technology node and beyond. The transistor leakage and interconnect RC delays will continue to increase. The tutorial will review new circuit design techniques for emerging process technologies, including dual Vt transistors and silicon-on-insulator. It will also cover circuit and layout techniques to reduce clock distribution skew and jitter, model and reduce transistor leakage and improve the electrical performance of flip-chip packages. Finally, the tutorial will review the test challenges for the 100nm technology node due to increased clock frequency and power consumption (both active and passive) and present several potential solution

    Decay of Correlations in Fermi Systems at Non-zero Temperature

    Full text link
    The locality of correlation functions is considered for Fermi systems at non-zero temperature. We show that for all short-range, lattice Hamiltonians, the correlation function of any two fermionic operators decays exponentially with a correlation length which is of order the inverse temperature for small temperature. We discuss applications to numerical simulation of quantum systems at non-zero temperature.Comment: 3 pages, 0 figure

    Specific heat of the S=1/2 Heisenberg model on the kagome lattice: high-temperature series expansion analysis

    Full text link
    We compute specific heat of the antiferromagnetic spin-1/2 Heisenberg model on the kagome lattice. We use a recently introduced technique to analyze high-temperature series expansion based on the knowledge of high-temperature series expansions, the total entropy of the system and the low-temperature expected behavior of the specific heat as well as the ground-state energy. In the case of kagome-lattice antiferromagnet, this method predicts a low-temperature peak at T/J<0.1.Comment: 6 pages, 5 color figures (.eps), Revtex 4. Change in version 3: Fig. 5 has been corrected (it now shows data for 3 different ground-state energies). The text is unchanged. v4: corrected an error in the temperature scale of Fig. 5. (text unchanged

    Field dependence of the magnetic spectrum in anisotropic and Dzyaloshinskii-Moriya antiferromagnets: I. Theory

    Full text link
    We consider theoretically the effects of an applied uniform magnetic field on the magnetic spectrum of anisotropic two-dimensional and Dzyaloshinskii-Moriya layered quantum Heisenberg antiferromagnets. The first case is relevant for systems such as the two-dimensional square lattice antiferromagnet Sr(2)CuO(2)Cl(2), while the later is known to be relevant to the physics of the layered orthorhombic antiferromagnet La(2)CuO(4). We first establish the correspondence betwenn the low-energy spectrum obtained within the anisotropic non-linear sigma model and by means of the spin-wave approximation for a standard easy-axis antiferromagent. Then, we focus on the field-theory approach to calculate the magnetic field dependence of the magnon gaps and spectral intensities for magnetic fields applied along the three possible crystallographic directions. We discuss the various possible ground states and their evolution with temperature for the different field orientations, and the occurrence of spin-flop transitions for fields perpendicular to the layers (transverse fields) as well as for fields along the easy axis (longitudinal fields). Measurements of the one-magnon Raman spectrum in Sr(2)CuO(2)Cl(2) and La(2)CuO(4) and a comparison between the experimental results and the predictions of the present theory will be reported in part II of this research work [L. Benfatto et al., cond-mat/0602664].Comment: 21 pages, 11 figures, final version. Part II of the present work is presented in cond-mat/060266

    Quantum Disordered Ground States in Frustrated Antiferromagnets with Multiple Ring Exchange Interactions

    Get PDF
    We present a certain class of two-dimensional frustrated quantum Heisenberg spin systems with multiple ring exchange interactions which are rigorously demonstrated to have quantum disordered ground states without magnetic long-range order. The systems considered in this paper are s=1/2 antiferromagnets on a honeycomb and square lattices, and an s=1 antiferromagnet on a triangular lattice. We find that for a particular set of parameter values, the ground state is a short-range resonating valence bond state or a valence bond crystal state. It is shown that these systems are closely related to the quantum dimer model introduced by Rokhsar and Kivelson as an effective low-energy theory for valence bond states.Comment: 6 pages, 4 figure

    Comprehensive quantum Monte Carlo study of the quantum critical points in planar dimerized/quadrumerized Heisenberg models

    Full text link
    We study two planar square lattice Heisenberg models with explicit dimerization or quadrumerization of the couplings in the form of ladder and plaquette arrangements. We investigate the quantum critical points of those models by means of (stochastic series expansion) quantum Monte Carlo simulations as a function of the coupling ratio α=J/J\alpha = J^\prime/J. The critical point of the order-disorder quantum phase transition in the ladder model is determined as αc=1.9096(2)\alpha_\mathrm{c} = 1.9096(2) improving on previous studies. For the plaquette model we obtain αc=1.8230(2)\alpha_\mathrm{c} = 1.8230(2) establishing a first benchmark for this model from quantum Monte Carlo simulations. Based on those values we give further convincing evidence that the models are in the three-dimensional (3D) classical Heisenberg universality class. The results of this contribution shall be useful as references for future investigations on planar Heisenberg models such as concerning the influence of non-magnetic impurities at the quantum critical point.Comment: 10+ pages, 7 figures, 4 table
    corecore